北方伟业计量集团有限公司
针对X射线荧光光谱分析技术在检测土壤重金属过程中由于土壤背景复杂、包含大量噪声和干扰信息而易受基体效应影响的问题,为了提高定量分析模型的精度,利用惩罚最小二乘算法拟合基线与真实基线之间的保真度和平滑度,对X射线荧光光谱进行基线校正,从而减小基线漂移的影响。选用无基线扣除、非对称最小二乘(ASLS)、自适应迭代重加权惩罚最小二乘(AIRPLS)、非对称重加权惩罚最小二乘(ARPLS)、局部对称重加权惩罚最小二乘(LSRPLS)和多约束重加权惩罚最小二乘(DRPLS)等6种处理方法对土壤重金属元素铅和砷的测量光谱进行基线校正;结合偏最小二乘(PLS)算法建立相应的校正模型,以选择最优基线校正算法;与神经网络(BP)和支持向量机(SVR)建立的校正模型进行比较,对模型进行评价。结果显示,铅元素的最佳模型为DRPLS PLS,模型的R~2达到0.982,预测均方根误差(RMSEP)为0.056 mg/kg;砷元素的最佳模型为DRPLS-PLS模型,模型的R~2达到0.985,RMSEP为0.796 mg/kg。与PLS和BP模型相比,铅、砷两种元素的SVR模型建模均最优,模型的R~2分别达到0.998和0.993,RMSEP分别为0.015、0.596 mg/kg。实验表明,通过基线校正后模型的预测精度、检出限和稳定性均有所提高,该方法可有效提高X射线荧光光谱在土壤中的定量分析能力。
相关推荐:土壤重金属危害;重金属检测方法及应用
登录后才可以评论
立即登录通话对您免费,请放心接听
温馨提示:
1.手机直接输入,座机前请加区号 如13803766220,010-58103678
2.我们将根据您提供的电话号码,立即回电,请注意接听
3.因为您是被叫方,通话对您免费,请放心接听